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Paranematic interaction between nanoparticles of ordinary shape
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We propose a general approach to the description of the long-ranged interaction between nanoparticles
(1-10 nm of ordinary shape in the paranematic phase, i.e., nematic liquid crystal in the isotropic phase. In
general case interaction potential is attractive of Yukawa form with derivatives. But it can be anisotropic
despite the isotropy of the paranematic phase. The origin of such anisotropy is the shape of nanoparticles.
Particular potentials for spherical and cylindrical particles are considered. For the case of nanocylinders
anisotropic part of the interaction potential can lead to the orientational ordering of them in the isotropic phase
of nematic liquid crystals.
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I. INTRODUCTION We propose a general approach to the description of the

Colloidal media formed by particles suspended in liquidsloNg-ranged interaction between nanoparticlesth size
are a widely abundant important state of matter and hav@Pout 1—-10 nm of ordinary shape in paranematic phase
attracted much interest in science, technology and medicin@ased on the self-consistent approach. The type of the far-
[1,2]. Dispersed liquid crystals with macroscopic inclusionsfield interaction among particles is determined by the dis-
of a foreign substance are particular of such systems. Otance and orientation and is strongly dependent on the tem-
dered structures of colloidal particles can give rise to bulkperature. In the paranematic phase we obtain the attractive
phenomena that are very different from those displayed bynteraction which can be the answer for the segregation of
disordered structure. Order as it is known also greatly affectthem with the formation of soft solid with high concentra-
the electro-optical and rheology properties of colloidal dis-tion. We offer an advanced earlier appro&8hto apply it for
persion. Including particles form various structures whichthe paranematic phase. For the case of high concentration of
are observed in liquid crystal mesophd$e-10]. In recent  particles we find that their collective influence is reduced to
years a great deal of interest h.as develop(_ad to understanq the change of the screening length. The offered approach
interaction and phase behavior of colloidal particles dis-allows us to receive energy of interaction in the paranematic
persed in the nematic phase or in the isotropic phase of ghase depending on the form and boundary conditions on the
nematogenic compound3-20. The paranematic phase is gyrface of a separate particle. It is shown that the interaction

the isotropic phase of the nematic liquid crystals. The intro-5ries anisotropic character. Interaction can give rise to an
dUC.Ed particles in such liquid can re_sult to orientational OMoriental ordering in the system of the introduced particles,
dering at the expense of the formation (_)f the so_lvent areg, vich are brought in the paranematic phase.

The existence of such deformed areas will result in effective
interaction, when these areas are overlap#gi14,17,18 Il. ENERGY OF THE SYSTEM: PARANEMATIC PHASE

Such interaction is known on short distances. In the nematic PLUS NANOPARTICLES

phase orientational ordering exists on the long distance. The

deformation of the elastic field results in the long-ranged For the weak induced nematic order in the isotropic
interaction between particles which are included in the nemphase, the quadratic Landau-de Gennes expansion of the
atic liquid crystal[3,4,8,11. In the nematic phase colloids bulk free-energy density has the form

experience a specific interaction because they induce com- 1

peting distortions of the nematic director field. In the isotro- Fp== f dvaQ;(R)Q;(R) +LQ; ((R)Q; KR), (1)

pic phase the surface of colloidal particles induces a local 2

nematic order, giving rise. to the short-ranged interactiothere the comma indicates derivation and summation over
[12-18. The same sort of induction of the parameter at therepeated indices is implied. Heae>0 andL >0 quantify the

surfac_e O.f the separate in_troduceq particle can oceur and ost of creating a distortion of the nematic phase. For sim-
usual in liquids. For spherical particles energy of mteractlorg‘l?

through change of order parameter in the paranematic pha: icity, we take a one-constant approximation. At the qua-
was counted in Ref$13.14. Analytical results of this prob- atic order, the corresponding surface free-energy density is
lem were given in the works of Reffl7] and[18]. In the 1 0 0

majority of interesting cases the introduced particles do not Fs= 52 dSWQ;(re = QiIlQy(rs) = Qjl, (2)
have the spherical form and thus it is interesting to receive P

dependence of energy of interaction on the form, orientationwhere W measures the anchoring strength. H&g is the

and parameters of ordering in such media. tensorial order parameter which is biaxial in the general case.
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Our approach is applicable both for uniaxial and biaxial lig-
uid crystal as we remain within the one-constant approxima- Xim= fﬁ dsWp((S)p(S) (11
tion.

When we haveN particles which is introduced in the wherep =(pk;,), o is an area of the surface of the particle. In
paranematic phase the free energy for all system can be rene Fourier representation, we have
written in the following form:

F=Fy+Fs. (3) Fin= >
p

1 N «
2(277)3JdBQ[Qij(Q)Aij(Q)+Qij(q)Aij(q)],
We do not consider here the distribution entropy part of
the free energy, because it does not have influence on the (12
director distribution and does not have influence on the find-
ing of the elastic interaction potential between the particleswhere
We can use the Fourier representation for the order pa- . .
rameter in the entire space, thereby considerably simplifying™i(®) =~ QI [oWI +i7(q - ko) = xs(q - k(q - ky)J&P.
the problem. In the Fourier representation we have P
Now we make similar operations with the quadratic term

Q;(r)= ! 3 J d®qexp(-iq - rQ;(a). (4) %ij(rS)Qij(rS). But in this term we go to the continuum
(2m) limit and replace the summation with the integration over the
We substitute(4) in the bulk energy(1) to obtain entire spaceX.,0 c/dV, wherec=N/V is the concentration

of particles, thus considering the interference of only long
1 . wave length distortions of the order parameter. This approxi-

== 3 20 -
Fo= 2(2m? f d*q(a+Lg9)Q;(a)Q;(a). 4 mation leads to the very simple expression Fd®in the

_Fourier representation
Because we assume that the order parameter varies

smoothly from point to point we can consider the director to coW .

have a given value inside the volume of the particle. This Fduad= mfdsq(DIj(q)Qij(q)- (13
V= o )

assumption is valid if the total volume of the suspended par-

ticles is much less than the entire volume of the system, i.e., Then the total energy of the system takes the fone-

the volume fraction of particles is smalty<<1, wherec  glecting constaan)

=N/V is the concentrationy is the volume of the particle _

(the “gas” approximation As well we fix the local basis Frota = Fo + Fu" + F3U2 (14

(kq,k,,k3) associated with each particle. In this basis a sca-

lar product of two arbitrary vectors can be written in the 1 .

form (a-b)=(a-ky(b-ky. The order parameter on the sur-  Fim= > 22 f d®gfa+cWo + Lg?]Q;(9)Q;(q)

face of the particle can therefore be expressed through the p 77

order parameter in the center of magsof the particle and + Qij(Q)A:J'(Q) + Qi*j(q)Aij(Q)- (15)

its derivatives

Qij(rd =Qy(rp) +(p- V)Qy(rp) + %(P . V)ZQij(rp),

A. Order parameter distribution in the doped paranematic
(6) liquid crystal

wherep is the vector drawn from the center of mass to the Having found the complete expression for the energy of
points on the surface. Surface energy density takes the fornthe paranematic phase with particles, we can find the order
parameter at any point of the system from the extremum

f= sWAQ -WQrgQf + 3WQi(r9Qy(r9 () o dition

and the total surface energy==,$dsf s

It can be rewritten as ———Fiom=[a+cWo + Lg?]Q;(q) + A;(q) =0,
Fo=FO + Fln 4 puad () 2Q;(@)
F(SO) = (1/2)NWO'Q8Q8, 9) Qi) =- _A'JL (16)
U a+cWo + Lg?
lin _ ' _ 0A . (r ) _ A0 ] .
F& =2 = WoQlQ;(rp) = Qf my(ks- V)Qy(rp) This is solution in the Fourier representation—distribution of
P 0 the order parameter.
= Qijxstks* V)(ki - V)Q;(rp), (10)
Where we have |ntroduced Such vector and tensor B. The pair interaction potential between nanoparticles
Having found the order parameter field, we substi{a&
m= fﬁ dsWp(s), in (15) and obtain the energy of the system

062701-2



BRIEF REPORTS PHYSICAL REVIEW H1, 062701(2005

QP

1 A (@A (@)
Fotal = — dg———"=—<0. (@17 Upy = - 2f(R
total 2(277)3f a+cWo+LqP (7 P =T T | (VTR
ive sign impli © VAL TN
The negative sign implies that the total free enefgyF, + oW(xE+ XSS)E +oWee(xs * xs)| ' = =YL
+Fota €Valuated for solutiorl6) is less than the enerdy
=F_ for the nondeformed order parameter fi€). (23

Let us introduce the operators wheref(R)=e™R/R and vectore=R/Ris the unit vector that

. is parallel to the radius vectd® between particles. As well
A= oW+ 75+ Xsids0h (18)  the summation over repeating indices is made.
Thus we see, that paranematic interaction in a general
where d,=(Vky). Then the producw\ij(q)A}}(q) takes the case has isotropic and anisotropic parts of interaction

simple form
Upp’(R) = Uisotropic(R) + Uanisotropic(R)a (24)
Ay (@A(A) = QIQIAA, X 1. (19) 0 o
PP Uisotropic(R) == _2|J7T_I_Il|:(0'\N)2f(R) + U'W(ng"' ng)ﬁ] )
Th_e total e_nergy:tota, can be represen_ted as the sum of the (25)
pair potentials between the two particles. The total energy
Fiotal then takes the form Q0P .
1 Uanisotropic(R) == —2”77—L|L|:U'W956t()(§t+ X&)(f” - E>:| .
Frota = 3 2 Upp- (20)
pp’ (26)

The origin of the anisotropic interaction is an anisotropy

The subscrlgp indicates that we must substitute d/ dr , in of the shape of particles. We see that res@@®—(26) do not

the operator: depend on the uniaxiality or biaxiality of the liquid crystal,
00 » and it influences only on the renormalization constant.
QiQi ~ ~ garprp) In the uniaxial approximation the order parameter in the
—— | | 3~N___ - i
Upp = 2(277)3APAP’ d 9 cWo + Lg? (21) " pylk and on the surface can be present in the form

— 1 0 _ 1
The expressiotJ,, has the meaning of the pair interaction Qi(R)=S(R){nin; - 35}, Qi = Sny=38), @7
potential between particlgs and p” that is caused by long- wheref is the director and’ is the normal to surfaces(R)
range deformations of the order parameter field. This exXpreepresents the order parameter in the p&irand S, is con-
sion i_s valid fpr the particle; of the ordinary shape and ori-gignt. TherQﬁQS:Z%/&
entation. Having found the integral Let us apply these results for several types of particles
_ embedded into the uniaxial phase on the nematic liquid crys-
3 gar _ 2m%e R tal. Our approximation is valid only for very small siggof
q)\2+ o TR particlesro<1/A. Actually this means that our approxima-
tion works only for nanoscale,=103-102 um. Then for

we come to the following expression for interaction poten-small spherical particles tensqiy=(4/ 3)Wrgdy is sym-

tial: metrical and potential of interaction is symmetrical too
2 -AR
0.0 R L (SeW) 8 2] e
YOS . A (@ U Rl =————| 1+ =(rgM)°|—, (28
Upp’ :_% LI ApAp’( = ), (22) spheresphere( ) 6L [ 3( 0 ) R ( )
v

hereo= wré, which is the area of the particle. Energy scale of

whereR=r,=r,, A=y(a+coW)/L. this paranematic interaction i8/~10 kT for $=0.4, rqg

Formula (22) represents the exact expression of the=10 nm, W=10"J/n?, L=10"'N/m, R~10 nm, 1A
paranematic interaction between two ordinary nanoparticles- 10 nm. This result is clearly a Yukawa type potential. It
embedded into the nematic liquid crystal in the isotropicdiffers from the Stark result whictj16] U~ (e?/R)[1
phasdstrictly speaking, for the case whenX#rq, r—the  +6(\/R)+12(\/R)?]* which is valid for micronsize scale
average size of the particle, so that series expan@poan ro=1/\, ro=0.1 um.
be trug. Now we find the interaction potential between two long

We can simplify this formula for the case of symmetrical cylinders with a radius smaller than the lenggk<| and with
particles with three symmetry planes. In this casg=0.  orientation along unit vector&, and w,. We neglect terms
Keeping only second derivatives éhwe come to such ex- of the orderO(r3). Then the interaction potential is found to
pression of the interaction potential be
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Ucylinder—cylinder(R) = Uisotcyl-cyI(R) + Uanisotcyl-cyI(R)l IIl. CONCLUSIONS

(29) We have proposed a general approach to the description
of the long-ranged interaction between nanoparticles of ordi-
(50(,\/\/)2 12§ nary shape in the paranematic phase, i.e., nematic liquid
Uisoteyreyl(R) = = f(R) + sRI (300  crystal in the isotropic phase. In general, the case interaction
potential is of the Yukawa type with derivatives and is attrac-
(SoW? . tive. General f_ormulas are_fqund which define _p(_)tential
Uanisotcyl—cyl(R):_—|:f”(R)__:|[(ewl)2+(ew2)2]v through tensorial characteristics of its form. Within the
97wl R framework of one constant approximation the results are
(31) valid both for biaxial and uniaxial nematic liquid crystal in
the isotropic state. Resultant interparticle interaction poten-
e=R/R, o=2nrjl—area of the cylinder. tial can be anisotropic despite the isotropy of the paranematic
Such angular dependence of the anisotropic interactiophase. The origin of such anisotopy is the shape of the nano-
U~ (ewy)?+(ew,)? is typical for the interaction between particles. For example the anisotropic part of the potential
nematogenic moleculésee Refs[21-23). It can lead to the  between nanocylinders can lead to the orientational ordering
orientational ordering of cylinders on the nanoscale like itof them in the isotropic phase of liquid crystals. This effect
works to create a nematic phase of the long nematogenicf orientational ordering can be important for the creation of
molecules. So we conclude that this anisotropic interactiora phase in the isotropic substances. For instance it is possible
may be responsible for the orientational ordering of longto use two nematic or smectic, with different temperatures of
nanoparticles in the isotropic phase of nematic liquid crystransition, to create an anisotropic phase of one component

tals, i.e., paranamatic phase. clusters within the isotropic phase of another component.
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