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We propose a general approach to the description of the long-ranged interaction between nanoparticles
s1–10 nmd of ordinary shape in the paranematic phase, i.e., nematic liquid crystal in the isotropic phase. In
general case interaction potential is attractive of Yukawa form with derivatives. But it can be anisotropic
despite the isotropy of the paranematic phase. The origin of such anisotropy is the shape of nanoparticles.
Particular potentials for spherical and cylindrical particles are considered. For the case of nanocylinders
anisotropic part of the interaction potential can lead to the orientational ordering of them in the isotropic phase
of nematic liquid crystals.
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I. INTRODUCTION

Colloidal media formed by particles suspended in liquids
are a widely abundant important state of matter and have
attracted much interest in science, technology and medicine
f1,2g. Dispersed liquid crystals with macroscopic inclusions
of a foreign substance are particular of such systems. Or-
dered structures of colloidal particles can give rise to bulk
phenomena that are very different from those displayed by
disordered structure. Order as it is known also greatly affects
the electro-optical and rheology properties of colloidal dis-
persion. Including particles form various structures which
are observed in liquid crystal mesophasef5–10g. In recent
years a great deal of interest has developed to understand the
interaction and phase behavior of colloidal particles dis-
persed in the nematic phase or in the isotropic phase of a
nematogenic compoundf13–20g. The paranematic phase is
the isotropic phase of the nematic liquid crystals. The intro-
duced particles in such liquid can result to orientational or-
dering at the expense of the formation of the solvent area.
The existence of such deformed areas will result in effective
interaction, when these areas are overlappedf13,14,17,18g.
Such interaction is known on short distances. In the nematic
phase orientational ordering exists on the long distance. The
deformation of the elastic field results in the long-ranged
interaction between particles which are included in the nem-
atic liquid crystalf3,4,8,11g. In the nematic phase colloids
experience a specific interaction because they induce com-
peting distortions of the nematic director field. In the isotro-
pic phase the surface of colloidal particles induces a local
nematic order, giving rise to the short-ranged interaction
f12–18g. The same sort of induction of the parameter at the
surface of the separate introduced particle can occur and is
usual in liquids. For spherical particles energy of interaction
through change of order parameter in the paranematic phase
was counted in Refs.f13,14g. Analytical results of this prob-
lem were given in the works of Refs.f17g and f18g. In the
majority of interesting cases the introduced particles do not
have the spherical form and thus it is interesting to receive
dependence of energy of interaction on the form, orientation,
and parameters of ordering in such media.

We propose a general approach to the description of the
long-ranged interaction between nanoparticlesswith size
about 1–10 nmd of ordinary shape in paranematic phase
based on the self-consistent approach. The type of the far-
field interaction among particles is determined by the dis-
tance and orientation and is strongly dependent on the tem-
perature. In the paranematic phase we obtain the attractive
interaction which can be the answer for the segregation of
them with the formation of soft solid with high concentra-
tion. We offer an advanced earlier approachf3g to apply it for
the paranematic phase. For the case of high concentration of
particles we find that their collective influence is reduced to
the change of the screening length. The offered approach
allows us to receive energy of interaction in the paranematic
phase depending on the form and boundary conditions on the
surface of a separate particle. It is shown that the interaction
carries anisotropic character. Interaction can give rise to an
oriental ordering in the system of the introduced particles,
which are brought in the paranematic phase.

II. ENERGY OF THE SYSTEM: PARANEMATIC PHASE
PLUS NANOPARTICLES

For the weak induced nematic order in the isotropic
phase, the quadratic Landau–de Gennes expansion of the
bulk free-energy density has the form

Fb =
1

2
E dVaQijsRdQijsRd + LQij ,ksRdQij ,ksRd, s1d

where the comma indicates derivation and summation over
repeated indices is implied. Herea.0 andL.0 quantify the
cost of creating a distortion of the nematic phase. For sim-
plicity, we take a one-constant approximation. At the qua-
dratic order, the corresponding surface free-energy density is

Fs =
1

2o
p
R dSWfQijsr sd − Qij

0gfQijsr sd − Qij
0g, s2d

where W measures the anchoring strength. HereQij is the
tensorial order parameter which is biaxial in the general case.
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Our approach is applicable both for uniaxial and biaxial liq-
uid crystal as we remain within the one-constant approxima-
tion.

When we haveN particles which is introduced in the
paranematic phase the free energy for all system can be re-
written in the following form:

F = Fb + Fs. s3d

We do not consider here the distribution entropy part of
the free energy, because it does not have influence on the
director distribution and does not have influence on the find-
ing of the elastic interaction potential between the particles.

We can use the Fourier representation for the order pa-
rameter in the entire space, thereby considerably simplifying
the problem. In the Fourier representation we have

Qijsr d =
1

s2pd3 E d3q exps− iq · r dQijsqd. s4d

We substitutes4d in the bulk energys1d to obtain

Fb =
1

2

1

s2pd3 E d3qsa + Lq2dQijsqdQij
* sqd. s5d

Because we assume that the order parameter varies
smoothly from point to point we can consider the director to
have a given value inside the volume of the particle. This
assumption is valid if the total volume of the suspended par-
ticles is much less than the entire volume of the system, i.e.,
the volume fraction of particles is small,cy!1, wherec
=N/V is the concentration,y is the volume of the particle
sthe “gas” approximationd. As well we fix the local basis
sk1,k2,k3d associated with each particle. In this basis a sca-
lar product of two arbitrary vectors can be written in the
form sa·bd=sa·ksdsb ·ksd. The order parameter on the sur-
face of the particle can therefore be expressed through the
order parameter in the center of massr p of the particle and
its derivatives

Qijsr sd = Qijsr pd + sr · = dQijsr pd + 1
2sr · = d2Qijsr pd,

s6d

wherer is the vector drawn from the center of mass to the
point s on the surface. Surface energy density takes the form

fs = 1
2WQij

0Qij
0 − WQijsr sdQij

0 + 1
2WQijsr sdQijsr sd s7d

and the total surface energyFs=oprdsfs
p

It can be rewritten as

Fs = Fs
s0d + Fs

lin + Fs
quad, s8d

Fs
s0d = s1/2dNWsQij

0Qij
0 , s9d

Fs
lin = o

p

− WsQij
0Qijsr pd − Qij

0pssks · = dQijsr pd

− Qij
0xstsks · = dskt · = dQijsr pd, s10d

where we have introduced such vector and tensor

pl = R dsWrlssd,

xlm = R dsWrlssdrmssd, s11d

whererl =srk1d, s is an area of the surface of the particle. In
the Fourier representation, we have

Fs
lin = o

p

1

2s2pd3 E d3qfQijsqdAij
* sqd + Qij

* sqdAijsqdg,

s12d

where

Aijsqd = − Qij
0o

p

fsW/ + ipssq · ksd − xstsq · ksdsq · ktdgeiqr p.

Now we make similar operations with the quadratic term
1
2WQijsr sdQijsr sd. But in this term we go to the continuum
limit and replace the summation with the integration over the
entire space,Sp⇒cedV, wherec=N/V is the concentration
of particles, thus considering the interference of only long
wave length distortions of the order parameter. This approxi-
mation leads to the very simple expression forFs

quad in the
Fourier representation

Fs
quad=

csW

2s2pd3 E d3qQijsqdQij
* sqd. s13d

Then the total energy of the system takes the formsne-
glecting constantFs

0d

Ftotal = Fb + Fs
lin + Fs

quad, s14d

Ftotal = o
p

1

2s2pd3 E d3qfa + cWs + Lq2gQijsqdQij
* sqd

+ QijsqdAij
* sqd + Qij

* sqdAijsqd. s15d

A. Order parameter distribution in the doped paranematic
liquid crystal

Having found the complete expression for the energy of
the paranematic phase with particles, we can find the order
parameter at any point of the system from the extremum
condition

d

dQij
* sqd

Ftotal = fa + cWs + Lq2gQijsqd + Aijsqd = 0,

Qijsqd = −
Aijsqd

a + cWs + Lq2 . s16d

This is solution in the Fourier representation—distribution of
the order parameter.

B. The pair interaction potential between nanoparticles

Having found the order parameter field, we substitutes16d
in s15d and obtain the energy of the system
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Ftotal = −
1

2s2pd3 E d3q
AijsqdAij

* sqd
a + cWs + Lq2 , 0. s17d

The negative sign implies that the total free energyE=Fs
s0d

+Ftotal evaluated for solutions16d is less than the energyE
=Fs

s0d for the nondeformed order parameter fieldQij
0.

Let us introduce the operators

Â = sW+ ps]s + xst]s]t, s18d

where ]s=s=ksd. Then the productAijsqdAij
* sqd takes the

simple form

AijsqdAij
* sqd = Qij

0Qij
0ÂpÂp8o

pp8

eiqsr p−r p8d. s19d

The total energyFtotal can be represented as the sum of the
pair potentials between the two particles. The total energy
Ftotal then takes the form

Ftotal =
1
2 o

p,p8

Upp8. s20d

The subscriptp indicates that we must substitute]=] /]r p in

the operatorÂp:

Upp8 = −
Qij

0Qij
0

2s2pd3ÂpÂp8E d3q
eiq·sr p−r p8d

a + cWs + Lq2 . s21d

The expressionUpp8 has the meaning of the pair interaction
potential between particlesp and p8 that is caused by long-
range deformations of the order parameter field. This expres-
sion is valid for the particles of the ordinary shape and ori-
entation. Having found the integral

E d3q
eiq·R

l2 + q2 =
2p2e−lR

R

we come to the following expression for interaction poten-
tial:

Upp8 = −
Qij

0Qij
0

2pL
ÂpÂp8Se−lR

R
D , s22d

whereR=r p−r p8, l=Îsa+csWd /L.
Formula s22d represents the exact expression of the

paranematic interaction between two ordinary nanoparticles
embedded into the nematic liquid crystal in the isotropic
phasefstrictly speaking, for the case when 1/l@ r0, r0—the
average size of the particle, so that series expansions6d can
be trueg.

We can simplify this formula for the case of symmetrical
particles with three symmetry planes. In this caseps=0.
Keeping only second derivatives onR we come to such ex-
pression of the interaction potential

Upp8 = −
Qij

0Qij
0

2pL
FssWd2fsRd

+ sWsxss
p + xss

p8d
f8

R
+ sWesetsxst

p + xst
p8dS f9 −

f8

R
DG ,

s23d

wherefsRd=e−lR/R and vectore=R /R is the unit vector that
is parallel to the radius vectorR between particles. As well
the summation over repeating indices is made.

Thus we see, that paranematic interaction in a general
case has isotropic and anisotropic parts of interaction

Upp8sRd = UisotropicsRd + UanisotropicsRd, s24d

UisotropicsRd = −
Qij

0Qij
0

2pL
FssWd2fsRd + sWsxss

p + xss
p8d

f8

R
G ,

s25d

UanisotropicsRd = −
Qij

0Qij
0

2pL
FsWesetsxst

p + xst
p8dS f9 −

f8

R
DG .

s26d

The origin of the anisotropic interaction is an anisotropy
of the shape of particles. We see that resultss22d–s26d do not
depend on the uniaxiality or biaxiality of the liquid crystal,
and it influences only on the renormalization constant.

In the uniaxial approximation the order parameter in the
bulk and on the surface can be present in the form

QijsRd = SsRdhninj − 1
3di jj, Qij

0 = S0snin j − 1
3di jd , s27d

wherenW is the director andnW is the normal to surface,SsRd
represents the order parameter in the pointR andS0 is con-
stant. ThenQij

0Qij
0 =2S0

2/3.
Let us apply these results for several types of particles

embedded into the uniaxial phase on the nematic liquid crys-
tal. Our approximation is valid only for very small sizer0 of
particlesr0,1/l. Actually this means that our approxima-
tion works only for nanoscaler0=10−3–10−2 mm. Then for
small spherical particles tensorxst=s4p /3dWr0

4dst is sym-
metrical and potential of interaction is symmetrical too

Usphere-spheresRd = −
sS0sWd2

6pL
F1 +

8

3
sr0ld2Ge−lR

R
, s28d

heres=pr0
2, which is the area of the particle. Energy scale of

this paranematic interaction isU,10 kT for S0=0.4, r0
=10 nm, W=10−4 J/m2, L=10−11 N/m, R,10 nm, 1/l
,10 nm. This result is clearly a Yukawa type potential. It
differs from the Stark result whichf16g U,se−lR/Rdf1
+6sl /Rd+12sl /Rd2g2 which is valid for micron-size scale
r0ù1/l, r0ù0.1 mm.

Now we find the interaction potential between two long
cylinders with a radius smaller than the lengthr0! l and with
orientation along unit vectorsv1 andv2. We neglect terms
of the orderOsr0

3d. Then the interaction potential is found to
be
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Ucylinder-cylindersRd = Uisot,cyl-cylsRd + Uanisot,cyl-cylsRd,

s29d

Uisot,cyl-cylsRd = −
sS0sWd2

6pL
F fsRd +

l2

6

f8

R
G , s30d

Uanisot,cyl-cylsRd = −
sS0sWld2

9pL
F f9sRd −

f8

R
Gfsev1d2 + sev2d2g,

s31d

e=R /R, s=2pr0l—area of the cylinder.
Such angular dependence of the anisotropic interaction

U,sev1d2+sev2d2 is typical for the interaction between
nematogenic moleculesssee Refs.f21–23gd. It can lead to the
orientational ordering of cylinders on the nanoscale like it
works to create a nematic phase of the long nematogenic
molecules. So we conclude that this anisotropic interaction
may be responsible for the orientational ordering of long
nanoparticles in the isotropic phase of nematic liquid crys-
tals, i.e., paranamatic phase.

III. CONCLUSIONS

We have proposed a general approach to the description
of the long-ranged interaction between nanoparticles of ordi-
nary shape in the paranematic phase, i.e., nematic liquid
crystal in the isotropic phase. In general, the case interaction
potential is of the Yukawa type with derivatives and is attrac-
tive. General formulas are found which define potential
through tensorial characteristics of its form. Within the
framework of one constant approximation the results are
valid both for biaxial and uniaxial nematic liquid crystal in
the isotropic state. Resultant interparticle interaction poten-
tial can be anisotropic despite the isotropy of the paranematic
phase. The origin of such anisotopy is the shape of the nano-
particles. For example the anisotropic part of the potential
between nanocylinders can lead to the orientational ordering
of them in the isotropic phase of liquid crystals. This effect
of orientational ordering can be important for the creation of
a phase in the isotropic substances. For instance it is possible
to use two nematic or smectic, with different temperatures of
transition, to create an anisotropic phase of one component
clusters within the isotropic phase of another component.
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